Sampling Ambisonic Decoder
This tool decodes a $L$-th degree Ambisonic sound scene on a $N$-node loudspeaker layout using the Sampling Ambisonic Decoder (SAD) technique: For each loudspeaker, the driving signal is calculated from a continuous distribution of loudspeaker1, sampled at the loudspeaker position (hence the term “sampling decorder”).
For the $n$-th loudspeaker at position $(r_n, \theta_n, \phi_n)$, with $n \in \{1, \cdots, N\}$, the driving signal $s_n(z)$ is given by:
\[\begin{equation} s_n(z) = \sum_{l=0}^L \frac{w_{\text{max-}r_E, l}(L)}{F_l(r_n, z)} \sum_{m=-l}^l Y_{l,m}(\theta_n, \phi_n) b_{l, m}(z) \label{eq:spk} \end{equation},\]where $w_{\text{max-}r_E}$ are the max-$r_E$ weights, $\frac{1}{F_l(r_n, z)}$ are the The Near Field Compensation (NFC) filters), $Y_{l,m}(\theta_n, \phi_n)$ are the Spherical Harmonics evaluated at loudspeaker direction and $b_{l,m}(z)$ are the Ambisonic components.
The NFC filters can be activated or not at compilation time with parameter nfcon
.
If activated (nfcon=1
), the gain attenuation and propagation delay between loudspeakers are as well equalized.
If not activated (nfcon=0
), $\frac{1}{F_l(r_n, z)} = 1$ in Eq. \eqref{eq:spk}.
Compilation parameters
L
: maximal Spherical Harmonics degree (i.e., Ambisonics order), $L > 0$,N
: number of loudspeakers, $N > 0$,nfcon
: activate or not NFC:0
for no NFC,1
for NFC.speaker(n) = (x, y, z)
$n$-th loudspeaker Cartesian coordinates in meters. One loudspeaker per line.
Inputs / Outputs
- Inputs: $(L+1)^2$
- Outputs: $N$
User Interface
Element | OSC | Min value | Max value |
---|---|---|---|
Outputs level (dB) | levelout |
-70 | 6 |
-
P. Lecomte, P.-A. Gauthier, C. Langrenne, A. Berry, et A. Garcia, « A Fifty-Node Lebedev Grid and Its Applications to Ambisonics », Journal of the Audio Engineering Society, vol. 64, nᵒ 11, p. 868‑881, 2016. ↩